String Diagrams

Context-free languages of string graphs

edNCE grammars

Grammar rewriting

Grammar transformation with DPO rewriting

Aleks Kissinger ¹ <u>Vladimir Zamdzhiev</u> ²

¹iCIS Radboud University

²Department of Computer Science University of Oxford

2 April 2016

Aleks Kissinger, Vladimir Zamdzhiev

Grammar transformation with DPO rewriting 1 / 25

String Diagrams •0000000	Motivation 00	Context-free languages of string graphs 00	edNCE grammars 0	Grammar pattern 000	Grammar rewriting	Conclusion and Future Work
		Str	ing Diagram	S		

Example

- First introduced by Roger Penrose in 1971 as alternative to the tensor-index notation used in theoretical physics.
- (Typed) nodes connected via (typed) wires
- Wires do not have to be connected to nodes at either end
- Open-ended wires serve as inputs/outputs
- Emphasis on compositionality

String Diagrams	
0000000	

Context-free languages of string graphs

ng graphs edNC 0

edNCE grammars

ammar pattern

Grammar rewriting 000000 Conclusion and Future Work

String diagram applications

Applications in:

• Monoidal category theory (sound and complete categorical reasoning)

Figure: J. Vicary, W. Zeng (2014)

• Quantum computation and information (graphical calculi, e.g. ZX-calculus)

Figure: B. Coecke, R. Duncan (2011)

String	Diagrams
00000	0000

String diagram applications

Concurrency (Petri nets)

Figure: P. Sobocinski (2010)

Computational linguistics (compositional semantics)

Figure: B. Coecke, E. Grefenstette, M. Sadrzadeh (2013)

String Diagrams	Motivation 00	Context-free languages of string graphs	edNCE grammars 0	Grammar pattern 000	Grammar rewriting 000000	Conclusion and Future Work
		String	Diagram Exa	ample		

A monoid is a triple $(A, \cdot, 1)$, such that:

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$
 and $1 \cdot a = a = a \cdot 1$

String Diagrams	Motivation 00	Context-free languages of string graphs 00	edNCE grammars O	Grammar pattern 000	Grammar rewriting 000000	Conclusion and Future Work
		String I	Diagram Exa	mple		

Equational reasoning is performed by replacing subdiagrams:

Example

String Diagrams	Motivation 00	Context-free languages of string graphs 00	edNCE grammars 0	Grammar pattern 000	Grammar rewriting	Conclusion and Future
		S	String Graphs			

Example

- String diagrams are formally described using (non-discrete) topological notions
- This is problematic for computer implementations
- Discrete representation exists in the form of String Graphs
- String graphs are typed (directed) graphs, such that:
 - Every vertex is either a *node-vertex* or a *wire-vertex*
 - No edges between node-vertices
 - In-degree of every wire-vertex is at most one
 - Out-degree of every wire-vertex is at most one

String Diagrams	Motivation	Context-free languages of string graphs	edNCE grammars	Grammar pattern	Grammar rewriting	Conclusion and Future Work
000000●0	00	00	O	000	000000	
		Reasoning	g with String	g Graphs		

We use double-pushout (DPO) rewriting on string graphs to represent string diagram rewriting:

String Diagrams 0000000●	Motivation 00	Context-free languages of string graphs 00	edNCE grammars O	Grammar pattern 000	Grammar rewriting	Conclusion and Future Work
		Families	of string dia	igrams		

- String diagrams (and string graphs) can be used to establish equalities between pairs of objects, one at a time.
- Proving infinitely many equalities simultaneously is only possible using metalogical arguments.

Example

• However, this is imprecise and implementing software support for it would be very difficult.

Motivation

• Given an equational schema between two families of string diagrams, how can we apply it to a target family of string diagrams and obtain a new equational schema?

Example

Motivation

•0

Equational schema between complete graphs on n vertices and star graphs on n vertices:

Then, we can apply this schema to the following family of graphs:

ring Diagrams 0000000	Motivation ○●	Context-free languages of string graphs 00	edNCE grammars O	Grammar pattern 000	Grammar rewriting	Conclusion and Future Wo
			Motivation			

and we obtain a new equational schema:

The main ideas are:

- Context-free graph grammars represent families of graphs
- "Grammar" DPO rewrite rules represent equational schemas
- "Grammar" DPO rewriting represents equational reasoning on families of graphs
- "Grammar" DPO rewriting is admissible (or correct) w.r.t. concrete instantiations

String Diagrams	Motivation	Context-free languages of string graphs	edNCE grammars	Grammar pattern	Grammar rewriting	Conclusion and Future Work
00000000	00	●0	O	000	000000	
		Contract				

Context-free graph grammars

- We investigate context-free graph grammars first, as they have better structural, complexity and decidability properties compared to other more expressive graph grammars.
- Most studied context-free graph grammars are:
 - Hyperedge replacement grammars (HR)
 - Vertex replacement grammars (VR)
- Large body of literature available for both VR and HR grammars
- VR grammars (also known as C-edNCE grammars) are more expressive than HR grammars in general
- We will be working with VR grammars only, in particular boundary grammars (B-edNCE)

String Diagrams 00000000	Motivation 00	Context-free languages of string graphs ○●	edNCE grammars O	Grammar pattern 000	Grammar rewriting	Conclusion and Future Work
		edNCE	grammar exa	ample		

The following grammar generates the set of all chains of node vertices with an input and no outputs:

A derivation in the above grammar of the string graph with three node vertices:

$$\underline{S} \Rightarrow \underbrace{\bullet} \times \underbrace{X} \Rightarrow \underbrace{\bullet} \times \underbrace{\bullet} \times$$

where we color the newly established edges in red.

 An edNCE grammar is a graph-like structure – essentially it is a partition of graphs equipped with connection instructions

String Diagrams	Motivation 00	Context-free languages of string graphs 00	edNCE grammars ●	Grammar pattern 000	Grammar rewriting 000000	Conclusion a

Adhesivity of edNCE grammars

- The category of (slightly generalized) edNCE grammars **GGram** is an adhesive category
- Suitable for performing DPO rewriting
- DPO rewriting along with gluing conditions in **GGram** are straightforward generalisations of the standard DPO method
- Languages induced by edNCE grammars are defined set-theoretically, not algebraically
- Restrictions on rewrite rules and matchings necessary if we wish rewriting in **GGram** to make sense w.r.t language generation

String Diagrams	Motivation	Context-free languages of string graphs	edNCE grammars	Grammar pattern	Grammar rewriting	Conclusion and Future Work
00000000	00	00	O	●00	000000	
		Quantific	ation over e	qualities		

• an equational schema between two families of string diagrams establishes infinitely many equalities:

- How do we model this using edNCE grammars?
- Idea: DPO rewrite rule in GGram, where productions are in 1-1 correspondance

String Diagrams	Motivation	Context-free languages of string graphs	edNCE grammars	Grammar pattern	Grammar rewriting	Conclusion and Future Work
00000000	00	00	0	○●○	000000	

Definition (Grammar rewrite pattern)

A *Grammar rewrite pattern* is a triple of grammars B_L , B_I and B_R , such that there is a bijection between their productions which also preserves non-terminals and their labels.

Definition (Pattern instantiation)

Given a grammar rewrite pattern (B_L, B_I, B_R) , a pattern instantiation is given by a triple of concrete derivations:

$$S \Longrightarrow_{v_1,p_1}^{B_L} H_1 \Longrightarrow_{v_2,p_2}^{B_L} H_2 \Longrightarrow_{v_3,p_3}^{B_L} \cdots \Longrightarrow_{v_n,p_n}^{B_L} H_n$$

and

$$S \Longrightarrow_{v_1, \rho_1}^{B_I} H'_1 \Longrightarrow_{v_2, \rho_2}^{B_I} H'_2 \Longrightarrow_{v_3, \rho_3}^{B_I} \cdots \Longrightarrow_{v_n, \rho_n}^{B_I} H'_n$$

and

$$S \Longrightarrow_{v_1, \rho_1}^{B_R} H_1'' \Longrightarrow_{v_2, \rho_2}^{B_R} H_2'' \Longrightarrow_{v_3, \rho_3}^{B_R} \cdots \Longrightarrow_{v_n, \rho_n}^{B_R} H_n''$$

• That is, we always expand the same non-terminals in the three sentential forms in parallel

Theorem

Every pattern instantiation is a DPO rewrite rule on graphs.

String Diagrams	Motivation	Context-free languages of string graphs	edNCE grammars	Grammar pattern	Grammar rewriting	Conclusion and Future Work
00000000	00	00	O	00●	000000	
		e e				

Example

String Diagrams 00000000	Motivation 00	Context-free languages of string graphs 00	edNCE grammars O	Grammar pattern ○○●	Grammar rewriting	Conclusion and Future Work
		0				

Example

Instantiation :

S

S

5

String Diagrams	Motivation	Context-free languages of string graphs	edNCE grammars	Grammar pattern	Grammar rewriting	Conclusion and Future Work
00000000	00	00	O	00●	000000	

Example

Instantiation :

String Diagrams 00000000	Motivation 00	Context-free languages of string graphs 00	edNCE grammars O	Grammar pattern ○○●	Grammar rewriting	Conclusion and Future Work

Example

Instantiation :

String Diagrams 00000000	Motivation 00	Context-free languages of string graphs 00	edNCE grammars O	Grammar pattern 00●	Grammar rewriting	Conclusion and Future Work

Example

Instantiation :

• We can encode infinitely many equalities between string diagrams by using grammar rewrite patterns

• Next, we show how to rewrite a family of diagrams using an equational schema in an admissible way

String	Diagrams
0000	0000

Context-free languages of string graphs

edNCE grammars

rammar pattern

Grammar rewriting 000000 Conclusion and Future Work

Example

Given an equational schema:

how do we apply it to a target family of string diagrams (left) and get the resulting family (right):

String Diagrams	Motivation 00	Context-free languages of string graphs 00	edNCE grammars O	Grammar pattern 000	Grammar rewriting
			Step one		

Encode equational schema as a grammar rewrite pattern. This:

becomes this:

BL Bı B_R **X**: **X**: **X**: **X**: *X*: *S*: **S**: *X*: S: \bigcirc X \mathbf{x} $\left| X \right|$ \leftrightarrow \hookrightarrow Ć X XХ

ring Diagrams 0000000	Motivation 00	Context-free languages of string graphs	edNCE grammars 0	Grammar pattern 000	Grammar rewriting	Conclusion and Future Work
			Step two			

Encode the target family of string diagrams using a grammar This:

becomes this:

Step three

- Match the grammar rewrite rule into the target grammar and perform DPO rewrite (in **GGram**)
- Note, both the rewrite rules and the matchings are more restricted than what is required by adhesivity in order to ensure admissibility

This:

=

is then given by:

Х

G_H :

Х

Y

S

- Grammar rewriting as defined is admissible in the sense that the transformation of grammars respects their instantiations
- More formally:
- If a grammar G rewrites into a grammar G' via a grammar rewrite rule B, then:
 - Every concrete instantiation of B is a standard DPO rewrite rule on graphs
 - The language of B, denoted L(B) is the set of all such DPO rewrite rules
 - The pair (G, G') forms a grammar pattern
 - For any concrete instantion H of G, a parallel concrete derivation H' exists for G'.
 - Then, the graph H' can be obtained from the graph H by applying some number of DPO rewrite rules on graphs from L(B) in any order

String Diagrams	Motivation	Context-free languages of string graphs	edNCE grammars	Grammar pattern	Grammar rewriting	Conclusion and Future Work
00000000	00	00	O	000	000000	●○

Conclusion and Future Work

- Basis for formalized equational reasoning for context-free families of string diagrams.
 - Framework can handle equational schemas and it can apply them to equationally reason about families of string diagrams
- Identify more general conditions for grammar rewriting such that the desired theorems and decidability properties hold
- Implementation in software (e.g. Quantomatic proof assistant)
- Once implemented, software tools can be used for automated reasoing for quantum computation, petri nets, etc.

String Diagrams	Motivation	Context-free languages of string graphs	edNCE grammars	Grammar pattern	Grammar rewriting	Conclusion and Future Work
00000000	00	00	O	000	000000	○●

Thank you for your attention!