UNIVERSITY OF TWENTE.

AN IMPROVED LANGUAGE FOR HIGH LEVEL CONTROL FLOW SEMANTICS DEFINITION

Richard Gankema, Arend Rensink, University of Twente Graphs as Models, Eindhoven, April 2016

CONTEXT: SOFTWARE LANGUAGE DESIGN

- How do you precisely specify a software language?
 - Imagine Java
- Ingredients
 - 1. Syntax (grammar)
 - 2. Static semantics (scoping, typing, binding)
 - 3. Dynamic semantics (run-time)
- Observations
 - 1. Solved (EBNF, parser generators)
 - 2. Solved (but no standardised approach)
 - 3. Unsolved (hypothesis: graph transformation is a good approach)
- Here: sub-problem of 3 (semantics)
 - Control flow specification
 - Solved generically: control flow specification language
 - Operationalised by extracting control flow graph from syntax graph

ROLES AND ACTIVITIES

CONTRIBUTION OF THIS PAPER

- Design concrete syntax for CFSL
 - Readable & appealing
 - What are good (general) design principles for graphical languages?
- Provide tool support
 - Translation to abstract syntax
- Guiding principles
 - The physics of notations: Toward a scientific basis for constructing visual notations in software engineering, D. Moody, IEEE Transactions on Software Engineering, 2009.

CFSL – ABSTRACT SYNTAX

- 1. Bare AST
- 2. Basic flow
- 3. Nodified branches
- 4. Branch reasons
- 5. Branch conditions
- 6. Break statements
- 7. Continue statements

PHYSICS OF NOTATIONS

CFSL score

- Semiotic Clarity
 - One-to-one semantic constructs ↔ graphical symbols

- Perceptual Discriminability
 - Different graphical symbols easily distinguishable

- Semantic Transparency
 - Graphical symbols suggest their true meaning

- Complexity Management
 - Explicit mechanisms to support complexity

- Visual Expressiveness
 - Use full range of visual variables

- Dual Coding
 - Use text to support (rather than complement) graphics

- Graphic economy
 - Number of different symbols coginitively manageable

DESIGNING CFSL+

Key element underlined & bold outline

Connectors are not arrows as there is no clear directionality

BASIC FLOW AND BRANCHING

Bold blue to appear in foreground; arrow symbol is appropriate

Only name to refer to condition for the sake of simplicity

ABRUPT FLOW

SPECIAL NODES

Start, stop, abort: Common symbols

`Shape distinct from syntax and branch nodes

Colour suggests link to basic and abrupt flow

ALL TOGETHER NOW

EVALUATION

- Concrete syntax designed according to guidelines
- Implementation
 - Graphical editor
 - Translation to abstract syntax
- Planned user evaluation
 - Not yet carried out

PHYSICS OF NOTATIONS

CFSL score

CFSL+ score

Semiotic Clarity

X

Perceptual Discriminability

/

Semantic Transparency

X

Complexity Management

√/x

Visual Expressiveness

X

Dual Coding

X

Graphic economy

/

/

More information and nuances in paper