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GRAPH REWRITING FRAMEWORK 
 Main ingredients 
 Graphs 𝐺𝐺 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺: the objects being rewritten 
 (Partial) morphisms 𝑓𝑓 ∈ 𝑀𝑀𝑀𝑀𝐺𝐺𝐺𝐺𝐺 ⊆ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 

 Rules 𝐺𝐺 ∈ 𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢: embodiment of types of change to (certain) graphs 
 Matches 𝑚𝑚 ∈ 𝑀𝑀𝐺𝐺𝑀𝑀𝑀𝑀𝐺: places in graph where rule can be applied 

 Matching function 𝑀𝑀:𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 → 2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 
 𝑀𝑀𝑟𝑟(𝐺𝐺) denotes the set of matches of 𝐺𝐺 in 𝐺𝐺 

 Rule application 𝐴𝐴:𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 × 𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢 × 𝑀𝑀𝐺𝐺𝑀𝑀𝑀𝑀𝐺 ⇀ 𝑀𝑀𝑀𝑀𝐺𝐺𝐺𝐺𝐺 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 
 𝐺𝐺 ⇒𝑟𝑟,𝑚𝑚,𝑓𝑓 𝐻𝐻 denotes 𝐴𝐴 𝐺𝐺,𝑚𝑚 = (𝑓𝑓,𝐻𝐻) 
 Match resolves non-determinism: 𝐴𝐴 is a (partial) function 
 Defined on 𝐺𝐺,𝑚𝑚, 𝐺𝐺  if and only if 𝑚𝑚 ∈ 𝑀𝑀𝑟𝑟 𝐺𝐺  
 Match 𝑚𝑚 and morphism 𝑓𝑓 often omitted: 𝐺𝐺 ⇒𝑟𝑟,𝑚𝑚 𝐻𝐻 or 𝐺𝐺 ⇒𝑟𝑟 𝐻𝐻 

 Nothing in the above is specific to graphs 
 Other rewriting formalisms: strings, terms, proofs, bigraphs, ... 
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EXAMPLE: FROG PUZZLE 
 

3 April 2016 Composed Graph Rewriting 3 

Demo using GROOVE: http://sf.net/projects/groove 



GRAPH TRANSITION SYSTEMS 
 Graph transition system (GTS): tuple 𝑆𝑆 = 〈𝑄𝑄,𝑅𝑅,→, 𝜄𝜄〉 
 States 𝑞𝑞 ∈ 𝑄𝑄, each with associated graph 𝐺𝐺𝑞𝑞 
 Rules 𝑅𝑅 ⊆ 𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢 
 Transition relation → ⊆ 𝑄𝑄 × 𝑅𝑅 × 𝑀𝑀𝐺𝐺𝑀𝑀𝑀𝑀𝐺 × 𝑀𝑀𝑀𝑀𝐺𝐺𝐺𝐺𝐺 × 𝑄𝑄 
 𝑞𝑞 →𝑟𝑟,𝑚𝑚,𝑓𝑓 𝑞𝑞′ only if 𝐺𝐺𝑞𝑞 ⇒𝑟𝑟,𝑚𝑚,𝑓𝑓 𝐺𝐺𝑞𝑞′ (not necessarily if!) 
 Again, we may omit 𝑚𝑚 and (more often) 𝑓𝑓 

 Initial state 𝜄𝜄 ∈ 𝑄𝑄 
 Frequently: uncontrolled (unscheduled) GTS  
 𝑄𝑄 ⊆ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝐺𝐺𝑞𝑞 = 𝑞𝑞 
 Every transformation generates a (unique) transition 
 Here, 𝑞𝑞 →𝑟𝑟,𝑚𝑚𝑓𝑓 𝑞𝑞′ whenever 𝐺𝐺𝑞𝑞 ⇒𝑟𝑟,𝑚𝑚,𝑓𝑓 𝐺𝐺𝑞𝑞′ 

 𝑆𝑆 is completely determined by 〈𝑅𝑅, 𝜄𝜄〉 
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GRAPH GRAMMARS 
 Rule system 𝑅𝑅 with initial graph defines graph language 
 Language of a GTS = set of graphs of reachable terminal states 
 For instance: language of trees, 2-coloured graphs, flow graphs 
 Generalises string grammars 

 Common technique: every rule consumes a “non-terminal” 
 When all non-terminals are consumed, state is terminal 
 Context-freedom: LHS is only a single non-terminal 

 Transition systems typically uncontrolled and infinite 
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Scenario 1 



GRAPH PRODUCTION SYSTEMS 
 Rule system 𝑅𝑅 defines relation 𝜌𝜌𝑅𝑅 over graphs 
 𝐺𝐺,𝐻𝐻 ∈ 𝜌𝜌𝑅𝑅 iff 𝐻𝐻 is the graph of a reachable state when 𝐺𝐺𝜄𝜄 = 𝐺𝐺 
 𝐻𝐻 is “produced” from 𝐺𝐺 

 Often, 𝜌𝜌𝑅𝑅 is meant to be a (partial or total) function 
 Only (or at most) one reachable terminal state for any start graph 
 Which can be found (or its absence confirmed) quickly and reliably 

 Transition systems typically finite 
 Infinite paths are very undesirable 
 Schedules can help to find short paths (“evaluation strategies”) 

 Examples 
 Normal form computations 
 E.g., functional programming, theorem proving 

 Model transformation 
 E.g., “construct the flow graph from an abstract syntax graph” 
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GRAPH-BASED BEHAVIOURAL SEMANTICS 
 Graph transition system describes evolution of system 
 Either trace set or full transition system is relevant 
 Often, reachable terminal state = deadlock = error 

 Transition systems 
 Typically contain cycles 
 Typically are non-deterministic 
 May very well be infinite (though this is often an error) 

 Control is often very useful 
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OUTLINE OF THIS TUTORIAL 
 Framework for (graph) transformation 
 Rule+match+tracing morhphism-labelled transition systems 
 Usage scenarios: grammars, production systems, semantics 

 Composition mechanisms: when simple rules are not enough 
 Amalgamation 
 Multi-nodes 
 Nested rules 

 Parameters 
 Input, output 

 Supervisory control 
 Programmed graph transformation 
 Atomicity 
 Transformation units 

 Strategic control 
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AMALGAMATION 
 Simple rules are limited 
 Effect is local and bounded / rules not generic 
 Example: rewrite (maximal) complete subgraph to star graph 
 Note: limitations can be advantageous! 

 Idea: apply one or several rules simultaneously 
 Formal interpretation 
 Take multiple matches of one or more rules (in the same graph) 
 Duplicate the rules per match and take their union 
 Apply the composed rule 
 Amalgamated rules may be nested, so union ≠ disjoint union 

 This is not always the same as repeatedly applying rules 
 All composed rules are applied to the same graph 
 Conflicts are resolved (or prevent rule application) 
 Matches cannot appear or disappear 
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GENERALISATION: FAMILIES OF RULES 
1. Through amalgamation 
 Copying/gluing subrules arbitrary number of times 

2. As the language of a grammar over rules 
 As seen yesterday in Vladimir Zamdzhiev’s presentation 
 

 I feel the latter is probably strictly more expressive 
 At least to express transformation in 1 rule 

 There are other well-known cases where amalgamation fails 
 Matching/processing all elements of a list 
 Copying a graph of arbitrary structure 

 Copied subrules cannot refer to one another 
 Context-free in some sense ? 
 Requires second-order logic 
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SUPERVISORY CONTROL 
 Explicitly determine the order of rule application 
 Programmed graph transformation 

 Typical constructs 
 Try a rule, do something else if rule is not applicable 
 Do rules in sequence 
 As long as possible apply a rule/set of rules 
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RULE PARAMETERS 
 Output parameters 
 Expose part of the match on the label 
 Primarily for observation 

 Input parameters 
 Partially determine the match 
 Primarily for control 
 Pragmatic reasons: to avoid “guessing” attribute values 

 Issue 
 Node type parameters expose node identities 
 Supposed to be internal/unknowable 
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TRANSACTIONS 
 If next rule in a sequence fails, state is terminal 
 This may not be the intended meaning 

 Transaction implies: 
 All-or-nothing behaviour 
 Backtrack & abandon path if it leads to terminal state 
 Abandoned part is not in the GTS! 

 Implicit in the semantics of try/else and alap 
 Body of alap should “fail” on terminal states 
 Not just if first rule is inapplicable 
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TRANSFORMATION UNITS 
 Named control abstractions 
 Signature consisting of (input and output) parameters 
 Control program as body 

 Behave as (composed) rules 
 Single transition in GTS 
 Labelled by unit name & tracing morphism 
 Body is executed as transaction (= atomically) 

 Groove: Recipes 
 Example: frogs 
 Freak example: fibonacci 
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STRATEGIC CONTROL 
 Often, one does not want to explore entire transition system 
 State space is too large 
 State space known to be confluent 

 Exploration strategies 
 Simulation mode 
 Linear exploration 

 Search mode, e.g. for property violations (LTL, invariant) 
 Depth-first rather than breadth-first 

 Optimisation mode: find “good” solution 
 Local rather than global optimum 

 Heuristics 
 Decide which path to explore first 
 Problem-dependent vs. problem-independent 

 Supervisory control restricts LTS, strategic control does not! 
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EVALUATION 
 Why are simple rules not enough? 
 Effect only local, not generic 
 Require to put control elements into graphs 
 Granularity not appropriate for problem at hand 
 Monolithic, no reuse of common elements 

 Composition mechanisms 
1. In space: families of rules 
2. In time: supervisory control, transformation units 

 Disadvantages 
1. More complex rules: reasoning becomes harder 
2. Loss of declarative nature: reasoning becomes harder 

 This is a fake objection! 
 Systems that benefit from composition mechanisms are complex 
 Composition partially relieves this, partially shifts it elsewhere 
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