
PROGRAMMED
CONTROLLED
COMPOSED GRAPH REWRITING
(ILLUSTRATED IN GROOVE)
Arend Rensink, University of Twente
Graphs as Models, Eindhoven, April 2016

3 April 2016 Composed Graph Rewriting 1

GRAPH REWRITING FRAMEWORK
 Main ingredients
 Graphs 𝐺𝐺 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺: the objects being rewritten
 (Partial) morphisms 𝑓𝑓 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ⊆ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

 Rules 𝑟𝑟 ∈ 𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢: embodiment of types of change to (certain) graphs
 Matches 𝑚𝑚 ∈ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀: places in graph where rule can be applied

 Matching function 𝑀𝑀:𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 → 2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
 𝑀𝑀𝑟𝑟(𝐺𝐺) denotes the set of matches of 𝑟𝑟 in 𝐺𝐺

 Rule application 𝐴𝐴:𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ⇀ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
 𝐺𝐺 ⇒𝑟𝑟,𝑚𝑚,𝑓𝑓 𝐻𝐻 denotes 𝐴𝐴 𝑟𝑟,𝑚𝑚 = (𝑓𝑓,𝐻𝐻)
 Match resolves non-determinism: 𝐴𝐴 is a (partial) function
 Defined on 𝐺𝐺,𝑚𝑚, 𝑟𝑟 if and only if 𝑚𝑚 ∈ 𝑀𝑀𝑟𝑟 𝐺𝐺
 Match 𝑚𝑚 and morphism 𝑓𝑓 often omitted: 𝐺𝐺 ⇒𝑟𝑟,𝑚𝑚 𝐻𝐻 or 𝐺𝐺 ⇒𝑟𝑟 𝐻𝐻

 Nothing in the above is specific to graphs
 Other rewriting formalisms: strings, terms, proofs, bigraphs, ...

3 April 2016 Composed Graph Rewriting 2

EXAMPLE: FROG PUZZLE

3 April 2016 Composed Graph Rewriting 3

Demo using GROOVE: http://sf.net/projects/groove

GRAPH TRANSITION SYSTEMS
 Graph transition system (GTS): tuple 𝑆𝑆 = 〈𝑄𝑄,𝑅𝑅,→, 𝜄𝜄〉
 States 𝑞𝑞 ∈ 𝑄𝑄, each with associated graph 𝐺𝐺𝑞𝑞
 Rules 𝑅𝑅 ⊆ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
 Transition relation → ⊆ 𝑄𝑄 × 𝑅𝑅 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑄𝑄
 𝑞𝑞 →𝑟𝑟,𝑚𝑚,𝑓𝑓 𝑞𝑞′ only if 𝐺𝐺𝑞𝑞 ⇒𝑟𝑟,𝑚𝑚,𝑓𝑓 𝐺𝐺𝑞𝑞𝑞 (not necessarily if!)
 Again, we may omit 𝑚𝑚 and (more often) 𝑓𝑓

 Initial state 𝜄𝜄 ∈ 𝑄𝑄
 Frequently: uncontrolled (unscheduled) GTS
 𝑄𝑄 ⊆ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝐺𝐺𝑞𝑞 = 𝑞𝑞
 Every transformation generates a (unique) transition
 Here, 𝑞𝑞 →𝑟𝑟,𝑚𝑚𝑚𝑚 𝑞𝑞′ whenever 𝐺𝐺𝑞𝑞 ⇒𝑟𝑟,𝑚𝑚,𝑓𝑓 𝐺𝐺𝑞𝑞𝑞

 𝑆𝑆 is completely determined by 〈𝑅𝑅, 𝜄𝜄〉

3 April 2016 Composed Graph Rewriting 4

GRAPH GRAMMARS
 Rule system 𝑅𝑅 with initial graph defines graph language
 Language of a GTS = set of graphs of reachable terminal states
 For instance: language of trees, 2-coloured graphs, flow graphs
 Generalises string grammars

 Common technique: every rule consumes a “non-terminal”
 When all non-terminals are consumed, state is terminal
 Context-freedom: LHS is only a single non-terminal

 Transition systems typically uncontrolled and infinite

3 April 2016 Composed Graph Rewriting 5

Scenario 1

GRAPH PRODUCTION SYSTEMS
 Rule system 𝑅𝑅 defines relation 𝜌𝜌𝑅𝑅 over graphs
 𝐺𝐺,𝐻𝐻 ∈ 𝜌𝜌𝑅𝑅 iff 𝐻𝐻 is the graph of a reachable state when 𝐺𝐺𝜄𝜄 = 𝐺𝐺
 𝐻𝐻 is “produced” from 𝐺𝐺

 Often, 𝜌𝜌𝑅𝑅 is meant to be a (partial or total) function
 Only (or at most) one reachable terminal state for any start graph
 Which can be found (or its absence confirmed) quickly and reliably

 Transition systems typically finite
 Infinite paths are very undesirable
 Schedules can help to find short paths (“evaluation strategies”)

 Examples
 Normal form computations
 E.g., functional programming, theorem proving

 Model transformation
 E.g., “construct the flow graph from an abstract syntax graph”

3 April 2016 Composed Graph Rewriting 6

Scenario 2

GRAPH-BASED BEHAVIOURAL SEMANTICS
 Graph transition system describes evolution of system
 Either trace set or full transition system is relevant
 Often, reachable terminal state = deadlock = error

 Transition systems
 Typically contain cycles
 Typically are non-deterministic
 May very well be infinite (though this is often an error)

 Control is often very useful

3 April 2016 Composed Graph Rewriting 7

Scenario 3

OUTLINE OF THIS TUTORIAL
 Framework for (graph) transformation
 Rule+match+tracing morhphism-labelled transition systems
 Usage scenarios: grammars, production systems, semantics

 Composition mechanisms: when simple rules are not enough
 Amalgamation
 Multi-nodes
 Nested rules

 Parameters
 Input, output

 Supervisory control
 Programmed graph transformation
 Atomicity
 Transformation units

 Strategic control

3 April 2016 Composed Graph Rewriting 8

AMALGAMATION
 Simple rules are limited
 Effect is local and bounded / rules not generic
 Example: rewrite (maximal) complete subgraph to star graph
 Note: limitations can be advantageous!

 Idea: apply one or several rules simultaneously
 Formal interpretation
 Take multiple matches of one or more rules (in the same graph)
 Duplicate the rules per match and take their union
 Apply the composed rule
 Amalgamated rules may be nested, so union ≠ disjoint union

 This is not always the same as repeatedly applying rules
 All composed rules are applied to the same graph
 Conflicts are resolved (or prevent rule application)
 Matches cannot appear or disappear

3 April 2016 Composed Graph Rewriting 9

GENERALISATION: FAMILIES OF RULES
1. Through amalgamation
 Copying/gluing subrules arbitrary number of times

2. As the language of a grammar over rules
 As seen yesterday in Vladimir Zamdzhiev’s presentation

 I feel the latter is probably strictly more expressive
 At least to express transformation in 1 rule

 There are other well-known cases where amalgamation fails
 Matching/processing all elements of a list
 Copying a graph of arbitrary structure

 Copied subrules cannot refer to one another
 Context-free in some sense ?
 Requires second-order logic

3 April 2016 Composed Graph Rewriting 10

SUPERVISORY CONTROL
 Explicitly determine the order of rule application
 Programmed graph transformation

 Typical constructs
 Try a rule, do something else if rule is not applicable
 Do rules in sequence
 As long as possible apply a rule/set of rules

3 April 2016 Composed Graph Rewriting 11

RULE PARAMETERS
 Output parameters
 Expose part of the match on the label
 Primarily for observation

 Input parameters
 Partially determine the match
 Primarily for control
 Pragmatic reasons: to avoid “guessing” attribute values

 Issue
 Node type parameters expose node identities
 Supposed to be internal/unknowable

3 April 2016 Composed Graph Rewriting 12

TRANSACTIONS
 If next rule in a sequence fails, state is terminal
 This may not be the intended meaning

 Transaction implies:
 All-or-nothing behaviour
 Backtrack & abandon path if it leads to terminal state
 Abandoned part is not in the GTS!

 Implicit in the semantics of try/else and alap
 Body of alap should “fail” on terminal states
 Not just if first rule is inapplicable

3 April 2016 Composed Graph Rewriting 13

TRANSFORMATION UNITS
 Named control abstractions
 Signature consisting of (input and output) parameters
 Control program as body

 Behave as (composed) rules
 Single transition in GTS
 Labelled by unit name & tracing morphism
 Body is executed as transaction (= atomically)

 Groove: Recipes
 Example: frogs
 Freak example: fibonacci

3 April 2016 Composed Graph Rewriting 14

STRATEGIC CONTROL
 Often, one does not want to explore entire transition system
 State space is too large
 State space known to be confluent

 Exploration strategies
 Simulation mode
 Linear exploration

 Search mode, e.g. for property violations (LTL, invariant)
 Depth-first rather than breadth-first

 Optimisation mode: find “good” solution
 Local rather than global optimum

 Heuristics
 Decide which path to explore first
 Problem-dependent vs. problem-independent

 Supervisory control restricts LTS, strategic control does not!

3 April 2016 Composed Graph Rewriting 15

EVALUATION
 Why are simple rules not enough?
 Effect only local, not generic
 Require to put control elements into graphs
 Granularity not appropriate for problem at hand
 Monolithic, no reuse of common elements

 Composition mechanisms
1. In space: families of rules
2. In time: supervisory control, transformation units

 Disadvantages
1. More complex rules: reasoning becomes harder
2. Loss of declarative nature: reasoning becomes harder

 This is a fake objection!
 Systems that benefit from composition mechanisms are complex
 Composition partially relieves this, partially shifts it elsewhere

3 April 2016 Composed Graph Rewriting 16

	programmed�controlled�Composed Graph Rewriting�(Illustrated in Groove)
	Graph rewriting framework
	Example: frog puzzle
	Graph Transition systems
	Graph grammars
	Graph production systems
	Graph-based behavioural semantics
	Outline of this tutorial
	Amalgamation
	Generalisation: Families of rules
	Supervisory control
	Rule Parameters
	Transactions
	Transformation units
	Strategic control
	Evaluation

