
PROGRAMMED
CONTROLLED
COMPOSED GRAPH REWRITING
(ILLUSTRATED IN GROOVE)
Arend Rensink, University of Twente
Graphs as Models, Eindhoven, April 2016

3 April 2016 Composed Graph Rewriting 1

GRAPH REWRITING FRAMEWORK
 Main ingredients
 Graphs 𝐺𝐺 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺: the objects being rewritten
 (Partial) morphisms 𝑓𝑓 ∈ 𝑀𝑀𝑀𝑀𝐺𝐺𝐺𝐺𝐺 ⊆ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

 Rules 𝐺𝐺 ∈ 𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢: embodiment of types of change to (certain) graphs
 Matches 𝑚𝑚 ∈ 𝑀𝑀𝐺𝐺𝑀𝑀𝑀𝑀𝐺: places in graph where rule can be applied

 Matching function 𝑀𝑀:𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 → 2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
 𝑀𝑀𝑟𝑟(𝐺𝐺) denotes the set of matches of 𝐺𝐺 in 𝐺𝐺

 Rule application 𝐴𝐴:𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 × 𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢 × 𝑀𝑀𝐺𝐺𝑀𝑀𝑀𝑀𝐺 ⇀ 𝑀𝑀𝑀𝑀𝐺𝐺𝐺𝐺𝐺 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
 𝐺𝐺 ⇒𝑟𝑟,𝑚𝑚,𝑓𝑓 𝐻𝐻 denotes 𝐴𝐴 𝐺𝐺,𝑚𝑚 = (𝑓𝑓,𝐻𝐻)
 Match resolves non-determinism: 𝐴𝐴 is a (partial) function
 Defined on 𝐺𝐺,𝑚𝑚, 𝐺𝐺 if and only if 𝑚𝑚 ∈ 𝑀𝑀𝑟𝑟 𝐺𝐺
 Match 𝑚𝑚 and morphism 𝑓𝑓 often omitted: 𝐺𝐺 ⇒𝑟𝑟,𝑚𝑚 𝐻𝐻 or 𝐺𝐺 ⇒𝑟𝑟 𝐻𝐻

 Nothing in the above is specific to graphs
 Other rewriting formalisms: strings, terms, proofs, bigraphs, ...

3 April 2016 Composed Graph Rewriting 2

EXAMPLE: FROG PUZZLE

3 April 2016 Composed Graph Rewriting 3

Demo using GROOVE: http://sf.net/projects/groove

GRAPH TRANSITION SYSTEMS
 Graph transition system (GTS): tuple 𝑆𝑆 = 〈𝑄𝑄,𝑅𝑅,→, 𝜄𝜄〉
 States 𝑞𝑞 ∈ 𝑄𝑄, each with associated graph 𝐺𝐺𝑞𝑞
 Rules 𝑅𝑅 ⊆ 𝑅𝑅𝑢𝑢𝑢𝑢𝑢𝑢
 Transition relation → ⊆ 𝑄𝑄 × 𝑅𝑅 × 𝑀𝑀𝐺𝐺𝑀𝑀𝑀𝑀𝐺 × 𝑀𝑀𝑀𝑀𝐺𝐺𝐺𝐺𝐺 × 𝑄𝑄
 𝑞𝑞 →𝑟𝑟,𝑚𝑚,𝑓𝑓 𝑞𝑞′ only if 𝐺𝐺𝑞𝑞 ⇒𝑟𝑟,𝑚𝑚,𝑓𝑓 𝐺𝐺𝑞𝑞′ (not necessarily if!)
 Again, we may omit 𝑚𝑚 and (more often) 𝑓𝑓

 Initial state 𝜄𝜄 ∈ 𝑄𝑄
 Frequently: uncontrolled (unscheduled) GTS
 𝑄𝑄 ⊆ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 and 𝐺𝐺𝑞𝑞 = 𝑞𝑞
 Every transformation generates a (unique) transition
 Here, 𝑞𝑞 →𝑟𝑟,𝑚𝑚𝑓𝑓 𝑞𝑞′ whenever 𝐺𝐺𝑞𝑞 ⇒𝑟𝑟,𝑚𝑚,𝑓𝑓 𝐺𝐺𝑞𝑞′

 𝑆𝑆 is completely determined by 〈𝑅𝑅, 𝜄𝜄〉

3 April 2016 Composed Graph Rewriting 4

GRAPH GRAMMARS
 Rule system 𝑅𝑅 with initial graph defines graph language
 Language of a GTS = set of graphs of reachable terminal states
 For instance: language of trees, 2-coloured graphs, flow graphs
 Generalises string grammars

 Common technique: every rule consumes a “non-terminal”
 When all non-terminals are consumed, state is terminal
 Context-freedom: LHS is only a single non-terminal

 Transition systems typically uncontrolled and infinite

3 April 2016 Composed Graph Rewriting 5

Scenario 1

GRAPH PRODUCTION SYSTEMS
 Rule system 𝑅𝑅 defines relation 𝜌𝜌𝑅𝑅 over graphs
 𝐺𝐺,𝐻𝐻 ∈ 𝜌𝜌𝑅𝑅 iff 𝐻𝐻 is the graph of a reachable state when 𝐺𝐺𝜄𝜄 = 𝐺𝐺
 𝐻𝐻 is “produced” from 𝐺𝐺

 Often, 𝜌𝜌𝑅𝑅 is meant to be a (partial or total) function
 Only (or at most) one reachable terminal state for any start graph
 Which can be found (or its absence confirmed) quickly and reliably

 Transition systems typically finite
 Infinite paths are very undesirable
 Schedules can help to find short paths (“evaluation strategies”)

 Examples
 Normal form computations
 E.g., functional programming, theorem proving

 Model transformation
 E.g., “construct the flow graph from an abstract syntax graph”

3 April 2016 Composed Graph Rewriting 6

Scenario 2

GRAPH-BASED BEHAVIOURAL SEMANTICS
 Graph transition system describes evolution of system
 Either trace set or full transition system is relevant
 Often, reachable terminal state = deadlock = error

 Transition systems
 Typically contain cycles
 Typically are non-deterministic
 May very well be infinite (though this is often an error)

 Control is often very useful

3 April 2016 Composed Graph Rewriting 7

Scenario 3

OUTLINE OF THIS TUTORIAL
 Framework for (graph) transformation
 Rule+match+tracing morhphism-labelled transition systems
 Usage scenarios: grammars, production systems, semantics

 Composition mechanisms: when simple rules are not enough
 Amalgamation
 Multi-nodes
 Nested rules

 Parameters
 Input, output

 Supervisory control
 Programmed graph transformation
 Atomicity
 Transformation units

 Strategic control

3 April 2016 Composed Graph Rewriting 8

AMALGAMATION
 Simple rules are limited
 Effect is local and bounded / rules not generic
 Example: rewrite (maximal) complete subgraph to star graph
 Note: limitations can be advantageous!

 Idea: apply one or several rules simultaneously
 Formal interpretation
 Take multiple matches of one or more rules (in the same graph)
 Duplicate the rules per match and take their union
 Apply the composed rule
 Amalgamated rules may be nested, so union ≠ disjoint union

 This is not always the same as repeatedly applying rules
 All composed rules are applied to the same graph
 Conflicts are resolved (or prevent rule application)
 Matches cannot appear or disappear

3 April 2016 Composed Graph Rewriting 9

GENERALISATION: FAMILIES OF RULES
1. Through amalgamation
 Copying/gluing subrules arbitrary number of times

2. As the language of a grammar over rules
 As seen yesterday in Vladimir Zamdzhiev’s presentation

 I feel the latter is probably strictly more expressive
 At least to express transformation in 1 rule

 There are other well-known cases where amalgamation fails
 Matching/processing all elements of a list
 Copying a graph of arbitrary structure

 Copied subrules cannot refer to one another
 Context-free in some sense ?
 Requires second-order logic

3 April 2016 Composed Graph Rewriting 10

SUPERVISORY CONTROL
 Explicitly determine the order of rule application
 Programmed graph transformation

 Typical constructs
 Try a rule, do something else if rule is not applicable
 Do rules in sequence
 As long as possible apply a rule/set of rules

3 April 2016 Composed Graph Rewriting 11

RULE PARAMETERS
 Output parameters
 Expose part of the match on the label
 Primarily for observation

 Input parameters
 Partially determine the match
 Primarily for control
 Pragmatic reasons: to avoid “guessing” attribute values

 Issue
 Node type parameters expose node identities
 Supposed to be internal/unknowable

3 April 2016 Composed Graph Rewriting 12

TRANSACTIONS
 If next rule in a sequence fails, state is terminal
 This may not be the intended meaning

 Transaction implies:
 All-or-nothing behaviour
 Backtrack & abandon path if it leads to terminal state
 Abandoned part is not in the GTS!

 Implicit in the semantics of try/else and alap
 Body of alap should “fail” on terminal states
 Not just if first rule is inapplicable

3 April 2016 Composed Graph Rewriting 13

TRANSFORMATION UNITS
 Named control abstractions
 Signature consisting of (input and output) parameters
 Control program as body

 Behave as (composed) rules
 Single transition in GTS
 Labelled by unit name & tracing morphism
 Body is executed as transaction (= atomically)

 Groove: Recipes
 Example: frogs
 Freak example: fibonacci

3 April 2016 Composed Graph Rewriting 14

STRATEGIC CONTROL
 Often, one does not want to explore entire transition system
 State space is too large
 State space known to be confluent

 Exploration strategies
 Simulation mode
 Linear exploration

 Search mode, e.g. for property violations (LTL, invariant)
 Depth-first rather than breadth-first

 Optimisation mode: find “good” solution
 Local rather than global optimum

 Heuristics
 Decide which path to explore first
 Problem-dependent vs. problem-independent

 Supervisory control restricts LTS, strategic control does not!

3 April 2016 Composed Graph Rewriting 15

EVALUATION
 Why are simple rules not enough?
 Effect only local, not generic
 Require to put control elements into graphs
 Granularity not appropriate for problem at hand
 Monolithic, no reuse of common elements

 Composition mechanisms
1. In space: families of rules
2. In time: supervisory control, transformation units

 Disadvantages
1. More complex rules: reasoning becomes harder
2. Loss of declarative nature: reasoning becomes harder

 This is a fake objection!
 Systems that benefit from composition mechanisms are complex
 Composition partially relieves this, partially shifts it elsewhere

3 April 2016 Composed Graph Rewriting 16

	programmed�controlled�Composed Graph Rewriting�(Illustrated in Groove)
	Graph rewriting framework
	Example: frog puzzle
	Graph Transition systems
	Graph grammars
	Graph production systems
	Graph-based behavioural semantics
	Outline of this tutorial
	Amalgamation
	Generalisation: Families of rules
	Supervisory control
	Rule Parameters
	Transactions
	Transformation units
	Strategic control
	Evaluation

