UNIVERSITY OF TWENTE.

PROGRAMMED CONTROLLED COMPOSED GRAPH REWRITING (ILLUSTRATED IN GROOVE)

Arend Rensink, University of Twente Graphs as Models, Eindhoven, April 2016

CRAPH REWRITING FRAMEWORK

- Main ingredients
 - Graphs $G \in Graph$: the objects being rewritten
 - (Partial) morphisms $f \in Morph \subseteq Graph \times Graph$
 - Rules $r \in Rule$: embodiment of types of change to (certain) graphs
 - Matches $m \in Match$: places in graph where rule can be applied
- Matching function $M: Rule \times Graph \rightarrow 2^{Match}$
 - $M^r(G)$ denotes the set of matches of r in G
- Rule application A: Graph × Rule × Match → Morph × Graph
 - $G \Rightarrow^{r,m,f} H$ denotes A(r,m) = (f,H)
 - Match resolves non-determinism: A is a (partial) function
 - Defined on (G, m, r) if and only if $m \in M^{r}(G)$
 - Match *m* and morphism *f* often omitted: $G \Rightarrow^{r,m} H$ or $G \Rightarrow^{r} H$
- Nothing in the above is specific to graphs
 - Other rewriting formalisms: strings, terms, proofs, bigraphs, ...

EXAMPLE: FROG PUZZLE

Demo using GROOVE: http://sf.net/projects/groove

UNIVERSITY OF TWENTE. Composed Graph Rewriting

GRAPH TRANSITION SYSTEMS

- Graph transition system (GTS): tuple $S = \langle Q, R, \rightarrow, \iota \rangle$
 - States $q \in Q$, each with associated graph G_q
 - Rules $R \subseteq Rule$
 - Transition relation $\rightarrow \subseteq Q \times R \times Match \times Morph \times Q$
 - $q \rightarrow^{r,m,f} q'$ only if $G_q \Rightarrow^{r,m,f} G_{q'}$ (not necessarily *if*!)
 - Again, we may omit *m* and (more often) *f*
 - Initial state $\iota \in Q$

- Frequently: uncontrolled (unscheduled) GTS
 - $Q \subseteq Graph \text{ and } G_q = q$
 - Every transformation generates a (unique) transition
 - Here, $q \rightarrow^{r,mf} q'$ whenever $G_q \Rightarrow^{r,m,f} G_{q'}$
 - S is completely determined by $\langle R, \iota \rangle$

Scenario 1 GRAPH GRAMMARS

- Rule system R with initial graph defines graph language
 - Language of a GTS = set of graphs of reachable terminal states
 - For instance: language of trees, 2-coloured graphs, flow graphs
 - Generalises string grammars

- When all non-terminals are consumed, state is terminal
- Context-freedom: LHS is only a single non-terminal
- Transition systems typically uncontrolled and infinite

Scenario 2 GRAPH PRODUCTION SYSTEMS

- Rule system *R* defines relation ρ_R over graphs
 - $(G, H) \in \rho_R$ iff *H* is the graph of a reachable state when $G_{\iota} = G$
 - *H* is "produced" from *G*
- Often, ρ_R is meant to be a (partial or total) function
 - Only (or at most) one reachable terminal state for any start graph
 - Which can be found (or its absence confirmed) quickly and reliably
- Transition systems typically finite
 - Infinite paths are very undesirable
 - Schedules can help to find short paths ("evaluation strategies")
- Examples

- Normal form computations
 - E.g., functional programming, theorem proving
- Model transformation
 - E.g., "construct the flow graph from an abstract syntax graph"

Scenario 3 GRAPH-BASED BEHAVIOURAL SEMANTICS

- Graph transition system describes evolution of system
 - Either trace set or full transition system is relevant
 - Often, reachable terminal state = deadlock = error
- Transition systems
 - Typically contain cycles
 - Typically are non-deterministic
 - May very well be infinite (though this is often an error)
- Control is often very useful

OUTLINE OF THIS TUTORIAL

- Framework for (graph) transformation
 - Rule+match+tracing morhphism-labelled transition systems
 - Usage scenarios: grammars, production systems, semantics
- Composition mechanisms: when simple rules are not enough
 - Amalgamation
 - Multi-nodes
 - Nested rules
 - Parameters
 - Input, output
 - Supervisory control
 - Programmed graph transformation
 - Atomicity
 - Transformation units
 - Strategic control

AMALGAMATION

- Simple rules are limited
 - Effect is local and bounded / rules not generic
 - Example: rewrite (maximal) complete subgraph to star graph
 - Note: limitations can be advantageous!
- Idea: apply one or several rules simultaneously
- Formal interpretation

- Take multiple matches of one or more rules (in the same graph)
- Duplicate the rules per match and take their union
- Apply the composed rule
- Amalgamated rules may be nested, so union \neq disjoint union
- This is not always the same as repeatedly applying rules
 - All composed rules are applied to the same graph
 - Conflicts are resolved (or prevent rule application)
 - Matches cannot appear or disappear

GENERALISATION: FAMILIES OF RULES

- 1. Through amalgamation
 - Copying/gluing subrules arbitrary number of times
- 2. As the language of a grammar over rules
 - As seen yesterday in Vladimir Zamdzhiev's presentation

- I feel the latter is probably strictly more expressive
 - At least to express transformation in 1 rule
- There are other well-known cases where amalgamation fails
 - Matching/processing all elements of a list
 - Copying a graph of arbitrary structure
- Copied subrules cannot refer to one another
 - Context-free in some sense?
 - Requires second-order logic

SUPERVISORY CONTROL

- Explicitly determine the order of rule application
 - Programmed graph transformation
- Typical constructs
 - Try a rule, do something else if rule is not applicable
 - Do rules in sequence
 - As long as possible apply a rule/set of rules

RULE PARAMETERS

- Output parameters
 - Expose part of the match on the label
 - Primarily for observation
- Input parameters
 - Partially determine the match
 - Primarily for control
 - Pragmatic reasons: to avoid "guessing" attribute values

Issue

- Node type parameters expose node identities
- Supposed to be internal/unknowable

TRANSACTIONS

- If next rule in a sequence fails, state is terminal
 - This may not be the intended meaning
- Transaction implies:
 - All-or-nothing behaviour
 - Backtrack & abandon path if it leads to terminal state
 - Abandoned part is not in the GTS!
- Implicit in the semantics of try/else and alap
 - Body of alap should "fail" on terminal states
 - Not just if first rule is inapplicable

TRANSFORMATION UNITS

- Named control abstractions
 - Signature consisting of (input and output) parameters
 - Control program as body
- Behave as (composed) rules
 - Single transition in GTS
 - Labelled by unit name & tracing morphism
 - Body is executed as transaction (= atomically)
- Groove: Recipes
 - Example: frogs
 - Freak example: fibonacci

STRATEGIC CONTROL

- Often, one does not want to explore entire transition system
 - State space is too large
 - State space known to be confluent
- Exploration strategies
 - Simulation mode
 - Linear exploration
 - Search mode, e.g. for property violations (LTL, invariant)
 - Depth-first rather than breadth-first
 - Optimisation mode: find "good" solution
 - Local rather than global optimum
- Heuristics
 - Decide which path to explore first
 - Problem-dependent vs. problem-independent
- Supervisory control restricts LTS, strategic control does not!

EVALUATION

- Why are simple rules not enough?
 - Effect only local, not generic
 - Require to put control elements into graphs
 - Granularity not appropriate for problem at hand
 - Monolithic, no reuse of common elements
- Composition mechanisms
 - 1. In space: families of rules
 - 2. In time: supervisory control, transformation units
- Disadvantages
 - 1. More complex rules: reasoning becomes harder
 - 2. Loss of declarative nature: reasoning becomes harder
- This is a fake objection!
 - Systems that benefit from composition mechanisms are complex
 - Composition partially relieves this, partially shifts it elsewhere