
Towards a Step Semantics for Story-

Driven Modelling

3. April 2016 | Real-Time Systems Lab | Prof. Dr. Andy Schürr | Géza Kulcsár | 1

Géza Kulcsár (TU Darmstadt, Germany)

Anthony Anjorin (Paderborn University, Germany)

geza.kulcsar@es.tu-darmstadt.de

GaM’16, Eindhoven, The Netherlands

ES – Real-Time Systems Lab

What is Story-Driven Modelling (SDM)?

2

this next
new

Next

this.deleteNextObject():

delete the next element of an

ordered list

next

Graph pattern for matching this and two

subsequent elements

ES – Real-Time Systems Lab

What is Story-Driven Modelling (SDM)?

3

this next this

Postcondition: this

must not be the last

element in the list

this
new

Next

2

Step 2: create a new default

object (newNext should not

be reused)

Step 1: delete next

element for the case of a

single „follower”

ES – Real-Time Systems Lab

What is Story-Driven Modelling (SDM)?

4

Complete specification in concrete

syntax (historically, UML-like visual

syntax, textual is also possible)

Uses simplified activity diagrams

with typical imperative constructs

(sequences, conditionals, ...)

ES – Real-Time Systems Lab

What is Story-Driven Modelling (SDM)?

Start node

Bound variables

represent partial

matches (binding via

identifiers)

Story nodes might contain graph

patterns which should be matched

in the graph...

Conditional branching

...but also (SPO) graph

transformation rules to

modify the graph

5

ES – Real-Time Systems Lab

What is Story-Driven Modelling (SDM)?

6

Simple case: list gets reconnected

Postcondition enforced

for shorter list tails

ES – Real-Time Systems Lab

Why bother with a formal semantics?

Denotational semantics (Zündorf, 2002):

• Defines the semantics in terms of valid

input-output pairs of graphs

• Useful to, e.g., test an implementation

for correctness

• It leaves crucial implementation

details open insufficient to

develop consistent tool support

Implementation based on denotational

semantics: CodeGen2 (Fujaba tool suite)

Complementary step semantics:

• Models directly the execution of an

SDM specification

• Clarifies details of the execution

behavior

• Supports SDM tool development and

enriching SDM with new language

constructs

Implementation towards a unified

semantics: Democles (eMoflon)

7

ES – Real-Time Systems Lab

Denotational Semantics for SDM (Zündorf)

8

𝑆𝑒𝑚 𝑆 ≔ {(𝐺𝑖 , 𝐺𝑜)|𝐺𝑖 ⟹ 𝐺𝑜}

Defined for Fujaba

(CodeGen2)

Semantics of a single

story node is the set of

all pairs of input and

output graphs

S

𝑟𝑢𝑙𝑒(𝑆)

ES – Real-Time Systems Lab

Denotational Semantics for SDM (Zündorf)

9

S1

S2

S2

S1

The semantics of a sequence of story

diagrams is the set of all pairs consisting

of the input graph of the first story

diagram, and the corresponding output

graph of the last story diagram

𝑆𝑒𝑚 𝑆1; 𝑆2 ≔

{(𝐺𝑖 , 𝐺𝑜)|𝐺𝑖 ⟹ 𝐺′ ⟹ 𝐺𝑜}
𝑟𝑢𝑙𝑒(𝑆1) 𝑟𝑢𝑙𝑒(𝑆2)

ES – Real-Time Systems Lab

Denotational Semantics for SDM (Zündorf)

10

S1

S2 S3

then

else

𝑆𝑒𝑚 𝑖𝑓 𝑆1 𝑡ℎ𝑒𝑛 𝑆2 𝑒𝑙𝑠𝑒 𝑆3 ≔

𝑆𝑒𝑚(𝑆1; 𝑆2) 𝑖𝑓 ∃𝐺𝑖 ⟹ 𝐺′
𝑆𝑒𝑚 𝑆1; 𝑆3 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑟𝑢𝑙𝑒(𝑆1)

ES – Real-Time Systems Lab

Unclear Situations: Termination

11

S1

S2

• The denotational semantics says

nothing about how to “terminate”

• Practically, it requires backtracking

or breadth-first search to discover

every possible rule application path

What should happen if

no match for S1 can

be found?

Or no match for S2?

• This is mostly too much effort and in

practice, we expect that the

execution terminates if a rule is not

applicable

• The step semantics allows for

formally describing this behavior

ES – Real-Time Systems Lab

Unclear Situations: Bindings and Scopes

12

All such bindings can

be used in story nodes

in the success branch

rootScope

If a match is found, next

and newNext are bound

to a model element

successScope

failureScope

But which bindings

should be available

when branches are

merged?

No bindings from the

conditional node can

be used in the failure

branch

Conservative: Remove bindings deleted in any

branch, no new bindings (paper)

Optimistic: Remove bindings deleted in any branch,

allow new bindings created in both branches

ES – Real-Time Systems Lab

Contribution

13

• In our paper, we suggest a complementary,

operational semantics for SDM to fix such

practical “low-level” design decisions

• These details might not be crucial for

proving correctness, but greatly influence

tool compatibility in practice

• Could be used to define compatibility levels

for SDM tools

ES – Real-Time Systems Lab

type graph for semantics

(scopes, token, bindings)

Structure of the Semantics

14

graph

grammar

defining

syntax

type graph

for syntax

graph

grammar

defining

semantics

Generates only syntactically

valid SDMs

ES – Real-Time Systems Lab

Example: Entering a Success Branch

rootScope rootScope

Bindings:

• this Position token

successScope

Bindings:

• this

• next

• newNext

• Semantics is given in terms of graph transformation rules for the semantic

elements (another abstraction level)

• The semantic specification relies only on standard rule applications

15

ES – Real-Time Systems Lab

Example: Entering a Success Branch

The position token is

shifted to the first story

node of the branch and

a new scope is created Bindings are copied to

the new scope

• Afterwards, bindings are

updated according to the

conditional story pattern

16

ES – Real-Time Systems Lab

Conclusion and Future Work

17

• Future extensions to SDM in the works: we propose to extend

both the denotational and operational semantics appropriately!

• Example: apply rule for each match

 • Recompute matches in each iteration? (CodeGen2)

• Compute each match once and apply in „parallel”? (Democles)

• Demand parallel independence?

• We proposed a step semantics to have a uniform definition of

SDM executional behavior

• The semantics allows for detailed decisions left open by the

previous denotational approach

• The semantics is based on a type graph which also allows for

defining a syntax grammar which generates valid SDMs

